

Visualization of noise current distribution in power module Tsuyoshi FUNAKI, Takaaki IBUCHI (Osaka Univ.)

- Name: Tsuyoshi FUNAKI
- Affiliation: Osaka university, graduate school of engineering, Division of Electrical, Electronic, and Infocommunications Engineering
- Position: Professor

- Introduction
- Switching noise
 - Difference among device type in frequency spectrum
 - Time and frequency analysis of EMI noise
 - Noise generation and propagation in power module
- Conclusion

Fourier spectrum of diode current

2020/11/16

Noise spectrum of conducted emission Transistor type dependency

Fig. Conducted noise spectrum (Rg= 10Ω)

- Almost same for < few MHz
- Peak at several MHz
 → ringing oscillation at turn off
- Peak at 20 ~ 30 MHz → ringing oscillation at turn on
- Spectrum level difference → difference in switching speed (turn on)
 - ➤ Depend on internal Rg, Ciss, gm
 - Depend on turn off of diode

COSAKA UNIVERSITY

COSAKA UNIVERSITY

11

Time and frequency spectrum distribution observation by magnetic near-field scanning system

Trigger for synchronization: gate voltage of Q1(Q4) Magnetic near-field measurement: use RF port of oscilloscope as a spectrum analyzer

2020/11/16

Time and frequency domain analysis of magnetic near-field

Magnetic field distribution in conducting condition of MOSFET (1.25MHz)

Current path: $P \rightarrow Q1 \rightarrow O$

Current path: $N \rightarrow Q2 \rightarrow O$

2020/11/16

COSAKA UNIVERSITY

Noise current distribution in switching COSAKA UNIVERSITY operation (24MHz) H_{x} H_{x} H_y H_{y} N V_{y}^{xy} H_{xy} y 130 [dBµA/m] 130 [dBµA/m] 110 110 X X (a) Q1 turn off, 24 MHz, H_{xy} (b) Q1 turn on, 24 MHz, H_{xy}

High intensity around P-N terminal Low intensity around O terminal (small effect on load current)

Correspond with current response and spectrogram

Noise current propagation (24MHz)

2020/11/16

19

0.000

- Fast switching of Wideband gap device
 - Bipolar (IGBT, PiND) -> unipolar (MOSFET,SBD)
 - No reverse recovery, no tail current
 - Fast switching operation
 - Wide band noise spectrum
 - Visualization of noise component
 - Emergence and extinction of noise current location can be detected

